Mark schemes

Q1.

D

An increase in pressure increases the value of Λ_c	An increase	in pressure	increases tl	he value of K_c
--	-------------	-------------	--------------	-------------------

[1]

1

Q2.			
(a)	M1	flask not clamped	
		allow only the condenser is clamped	
			1
	M2	sealed system / bung in condenser	
		allow explanation of effect of bung being there e.g. pressure build up	
		not reference to incorrect water direction	
			1
(b)	sulfu	ric acid needs adding	
		allow hydrochloric / nitric / phosphoric	
		ignore conc/dil	
		not just acid/H+	
			1
(c)	M1	direction of water flow through condenser	
		allow reference to water direction from answer to	
		(a)	1
			•
	M2	thermometer not needed	
		allow references to safety issue(s) if not given in (a)	
		ignore reference to position of thermometer	
			1
(d)	to pr	event 'bumping'	
		allow prevent large bubbles / ensure small bubbles	
		not increases rate	
			1
(e)	M1	(fractional) distillation	
			1
		<u>6.5</u>	
	W2	60 moi propan-1-0i (= max 60 moi propanoic acid) (0.108) 6.5 6.5	
		M2 $\overline{60}$ mol propan-1-ol (= max $\overline{60}$ mol propanoic acid)	

	М3	$\frac{6.5 \times 74}{60} = 8.02 \text{ g (i.e. M2 x 74)}$ $M3 \frac{3.25}{74} \text{ mol propanoic acid formed}$	
	M4	$\frac{3.25 \times 100}{8.02} = 40.5 \%$ $M4 \frac{3.25/74}{6.5/60} \times 100 = 40.5 \%$	1
(f)	M 1	add sodium carbonate/hydrogencarbonate	1
	М2	effervescence / bubbles not gives off (CO ₂) gas	1
	МЗ	no (visible) change/reaction not nothing / no observation allow acidified sodium/potassium dichromate no visible change / stays orange orange to green allow named alcohol + sulfuric acid plus sweet smell and no change/reaction allow named carboxylic acid + sulfuric acid plus no change/reaction and sweet smell not pH measurement incorrect reagent = 0/3 incomplete reagent – mark on	1 [13]
Q3. C		C ₆ H₅COCH₃	[1]
Q4. В		Biofuel ethanol is purified by fractional distillation	[1]
Q5. (a)	M1	moles of propan-1-ol = $\frac{6.0 \times 0.80}{60.0}$ (= 0.080)	

67 cm³ scores 3 marks

1

1

1

1

M2 moles of $K_2Cr_2O_7 = \frac{M1}{3}$ (= 0.0267)

Allow ECF for M2 and M3

M3 volume of $K_2Cr_2O_7 = \frac{M2}{0.40} \times 1000 = 67 \text{ (cm}^3\text{)}$

(allow 66.666.... to 68)

final answer to at least 2 sf 200 (cm³) scores 2 marks; 66.6 (cm³) is outside range and scores 2 marks; 66.6 (cm³) (i.e. 66.6 dot scores 3 marks)

(b) **M1** an attempt to draw apparatus that is clearly for (fractional) distillation

On this occasion, the apparatus does not need a thermometer or a collection container

M2 suitable drawing of distillation apparatus with condenser attached to side of distillation head

- condenser must have outer tube for water that is sealed at the ends but have two openings for water in/out (that are open)
- condenser must have downwards slope
- condenser must be open at each end
- as this is a cross-section, there should be a continuous flow through the diagram from the flask to the end of the open condenser (there should be no lines drawn across implying a seal of any sort)
- there must be no gaps at joints between apparatus where vapour could escape
- there must be some opening to the system at the collection end
 Ignore any fractionating column in M1 and M2 between the flask and condenser.

1

M3 condenser labelled including labels for water in and water out (water must come in at lower end)

For **M3**, if water in and out clearly stated, ignore direction of any arrows drawn. Allow 'condensing tube' or 'condensing column' or similar for name of condenser.

If a reflux diagram is drawn (any diagram with a condenser attached vertically into the flask is a reflux set up, even with a downwards tube from the top of the condenser):

		 cannot score M1 or M2 could score M3 for condenser labelled including labels for water in and water out (water must come in at the lower end) 		[6]
Q6. D				
		3-methylbutan-2-ol		[1]
Q7. C				[1]
Q8. A				[1]
Q9. (a)	M 1	Moles of cyclohexanol = (10 × 0.96)/100.0 = 0.096 Correct answer scores all 3 marks	1	
	М2	Max mass of cyclohexene = $0.096 \times 82.0 = 7.87(2)$ = $M1 \times 82.0$ (process mark)	1	
	М3	% yield = (5.97 / 7.87) × 100 = 76% (Allow range 75.8 – 76) = (5.97 / M2) × 100 (process mark)	1	
	Alte	rnative method		
	M1	Moles of cyclohexanol = $(10 \times 0.96)/100.0 = 0.096$		
	M2	Moles of cyclohexene = 5.97/82.0 = 0.0728		
	М3	% yield = 0.0728 / 0.096 × 100 = 76% (allow range 75.8 – 76) = (M2 / M1) × 100 Allow 1/3 for 62(.2)%		
(b)	Add	bromine (water) If M1 not correct then only allow M2 if reagent involves bromine (water)	1	
	Wou	Ild turn (from orange to) colourless / decolourise		

Do not allow incorrect starting colour, but allow brown/red/yellow Not discolour. Ignore clear 1 (C) Na₂CO₃ would neutralise/react with/remove (phosphoric) acid/H₃PO₄/H⁺ 1 (d) avoid pressure build-up / release pressure / release CO₂/air/gas / prevent stopper blowing out Ignore explosion Do not allow an incorrect named gas Allow idea that build-up of gas/CO₂ would lead to increased pressure/stated effect of increased pressure 1 (e) Does not dissolve in/react with the cyclohexene Allow remains a solid/is inert in cyclohexene Allow organic product/organic compound formed/ organic layer/distillate instead of cyclohexene Do not allow if answer implies cyclohexanol Do not allow if answer says does not react with products Ignore references to filtration Do not allow insoluble/unreactive unless qualified by implied reference to cyclohexene 1 (f) If diagram drawn: M1 diagram of basic set up to include flask or tube with side-arm/Buchner flask, flat-bottomed funnel/Buchner funnel, filter paper apparatus should work, flow through, air-tight connection between M2 flask and funnel, arrow/label/description (to vacuum pump) Do not allow "standard" Y-shaped funnel 1 If description given: **M1** Buchner funnel/flat-bottomed funnel containing filter paper M2 Buchner flask/side-arm flask connected to vacuum pump Do not allow just "funnel" Penalise M2 if described apparatus would not actually work. 1 Cyclohexene is less polar than cyclohexanol / cyclohexanol is more polar (g) than cyclohexene

It = cyclohexene Allow cyclohexene is non-polar and cyclohexanol is polar 1 Cyclohexene has a greater affinity/attraction for the mobile phase/hexane / cyclohexanol has a greater affinity/attraction for the stationary phase/silica Allow cyclohexanol held in the stationary phase for longer Allow cyclohexene is more soluble in the mobile phase/hexane or converse for cyclohexanol Allow references to hydrogen bonds between cylcohexanol and silica 1 Would be no peak at 3230 – 3550 cm⁻¹ due to O—H((alcohol)) (h) OR There would be no additional peaks in the fingerprint region compared to a pure sample / fingerprint region exactly matches cyclohexene Need wavenumber and bond for mark 1 [13] Q10. Α [1] Q11. В [1] Q12. This question is marked using levels of response. Refer to the Mark (a) Scheme Instructions for Examiners for guidance on how to mark this question. Level 3 All stages are covered and the explanation of each stage is generally correct and virtually complete.

Answer communicates the whole process coherently and shows a logical progression through the distillation apparatus. The first two points in stage 1 are in the correct order and all other steps are in a logical order for carrying out the practical.

5-6 marks

Level 2

All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies.

Answer is mainly coherent and shows a progression through the distillation apparatus.

Some steps in each stage may be out of order and incomplete but the first two points in stage 1 are in the correct order.

3-4 marks

Level 1

Most points are covered but the explanation of each stage may be incomplete or may contain inaccuracies.

Answer includes some isolated statements, but these are not presented in a logical order or show confused reasoning. The first two points in stage 1 are present but not necessarily in the correct order.

1-2 marks

Level 0

Insufficient correct chemistry to warrant a mark.

Omission of heating of the apparatus.

0 marks

Indicative content:

Stage 1

- Turn on the water.
- Heat the flask, with a Bunsen burner.
- This causes water and ethanol vapours to be produced.

Stage 2

- Vapours pass up the fractionating column A.
- Water and ethanol are separated in column A.
- Water condenses back into the flask in column A.
- Stage 3
- Observe the thermometer at B to keep the temperature at or below the boiling point of ethanol.

Only ethanol vapour (with a little water) passes into the condenser.

- Use the condenser at part C to cool the vapours and condense the ethanol back into a liquid.
- (b) Volume of sample = volume of ethanol + volume of water

Let m = mass of ethanol

20 = m / 0.79 + (16-m) / 1.00

1.266m – m = 20 – 16

0.266m = 4 so m = 15 (g)

1

[8]